Title: | Performing Inference on Networks with Regularization |
---|---|
Description: | Performs inference with the lasso in Gaussian Graphical Models. The package consists of wrappers for functions from the hdi package. |
Authors: | Lourens Waldorp <[email protected]>, Jonas Haslbeck <[email protected]> |
Maintainer: | Jonas Haslbeck <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.1.0 |
Built: | 2025-03-10 03:33:27 UTC |
Source: | https://github.com/jmbh/inet |
The package includes a dataset with measurements of 17 PTSD symptoms taken from 344 individuals. See McNally et al. (2015) for more details.
Jonas Haslbeck
McNally, R. J., Robinaugh, D. J., Wu, G. W., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems: A network approach to posttraumatic stress disorder. Clinical Psychological Science, 3(6), 836-849.
Internal inet functions.
These are internal functions.
Jonas Haslbeck
Estimate a Gaussian Graphical Model with lasso-regularized nodewise regression, where the regularization parameter is selected with cross-validation. This is a wrapper around the function cv.glmnet()
from the glmnet
package.
lasso(data, pbar = TRUE, nfolds = 10, rulereg = "and")
lasso(data, pbar = TRUE, nfolds = 10, rulereg = "and")
data |
An n x p matrix containing the data, where n are cases and p are variables |
pbar |
If |
nfolds |
Specifies the number of folds used to select the regularization parameter in each of the p nodewise regressions. |
rulereg |
Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to |
The function returns a list with the following entries:
est |
A p x p matrix with point estimates for all partial correlations |
select |
A p x p indicator matrix indicating which edges have been selected to be present. |
ints |
A p-vector of estimated intercepts. |
Jonas Haslbeck <[email protected]>
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1.
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso(data = ptsd_data) ## End(Not run)
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso(data = ptsd_data) ## End(Not run)
Estimate Gaussian Graphical Models using the desparsified lasso. This is a wrapper around the function lasso.proj
of the hdi
package.
lasso_dsp(data, betainit = "cv lasso", ci.level = 0.95, correction = TRUE, pbar = TRUE, rulereg = "and")
lasso_dsp(data, betainit = "cv lasso", ci.level = 0.95, correction = TRUE, pbar = TRUE, rulereg = "and")
data |
An n x p matrix containing the data, where n are cases and p are variables |
betainit |
Specifying how to estimate lasso solution in initial estimation. Either |
ci.level |
Specifies the width of the confidence interval used for testing the null hypothesis that a parameter is different to zero. Defaults to |
correction |
If |
pbar |
If |
rulereg |
Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to |
The function returns a list with the following entries:
est |
A p x p matrix with point estimates for all partial correlations |
est.signf |
A p x p matrix with point estimates for all partial correlations with non-significant partial correlations being thresholded to zero. |
signf |
A p x p matrix indicating for each partial correlation whether it is significantly different to zero. |
ci.lower |
A p x p matrix indicating the lower confidence interval for each partial correlation. |
ci.upper |
A p x p matrix indicating the upper confidence interval for each partial correlation. |
Jonas Haslbeck <[email protected]>; Lourens Waldorp <[email protected]>
Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. John Wiley & Sons, Inc..
Buehlmann, P., Kalisch, M., & Meier, L. (2014). High-dimensional statistics with a view toward applications in biology. Annual Review of Statistics and Its Application, 1, 255-278.
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso_dsp(data = ptsd_data) ## End(Not run)
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso_dsp(data = ptsd_data) ## End(Not run)
Estimate Gaussian Graphical Models using the desparsified lasso using the bootstrap. This is a wrapper around the function lasso.proj
of the hdi
package.
lasso_dsp_boot(data, betainit = "cv lasso", ci.level = 0.95, correction = TRUE, B = 1000, pbar = TRUE, rulereg = "and")
lasso_dsp_boot(data, betainit = "cv lasso", ci.level = 0.95, correction = TRUE, B = 1000, pbar = TRUE, rulereg = "and")
data |
An n x p matrix containing the data, where n are cases and p are variables |
betainit |
Specifying how to estimate lasso solution in initial estimation. Either |
ci.level |
Specifies the width of the confidence interval used for testing the null hypothesis that a parameter is different to zero. Defaults to |
correction |
If |
B |
The number of bootstrap samples used for estimation. Defaults to |
pbar |
If |
rulereg |
Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to |
The function returns a list with the following entries:
est |
A p x p matrix with point estimates for all partial correlations |
est.signf |
A p x p matrix with point estimates for all partial correlations with non-significant partial correlations being thresholded to zero. |
signf |
A p x p matrix indicating for each partial correlation whether it is significantly different to zero. |
ci.lower |
A p x p matrix indicating the lower confidence interval for each partial correlation. |
ci.upper |
A p x p matrix indicating the upper confidence interval for each partial correlation. |
Jonas Haslbeck <[email protected]>; Lourens Waldorp <[email protected]>
Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. John Wiley & Sons, Inc..
Bühlmann, P., Kalisch, M., & Meier, L. (2014). High-dimensional statistics with a view toward applications in biology. Annual Review of Statistics and Its Application, 1, 255-278.
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (No. 1). Cambridge university press.
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso_dsp_boot(data = ptsd_data) ## End(Not run)
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso_dsp_boot(data = ptsd_data) ## End(Not run)
Estimate Gaussian Graphical Models with inference base don the multi-split method. This is a wrapper of the function multi.split
of the hdi
package.
lasso_ms(data, B = 50, fraction = 0.5, ci.level = 0.95, correction = TRUE, pbar = TRUE, rulereg = "and")
lasso_ms(data, B = 50, fraction = 0.5, ci.level = 0.95, correction = TRUE, pbar = TRUE, rulereg = "and")
data |
An n x p matrix containing the data, where n are cases and p are variables |
B |
The number of sample-splits. Defaults to |
fraction |
a number in (0,1), the fraction of data used at each sample split for the model selection process. The remaining data is used for calculating the p-values. |
ci.level |
Specifies the width of the confidence interval used for testing the null hypothesis that a parameter is different to zero. Defaults to |
correction |
If |
pbar |
If |
rulereg |
Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to |
The function returns a list with the following entries:
est |
A p x p matrix with point estimates for all partial correlations |
est.signf |
A p x p matrix with point estimates for all partial correlations with non-significant partial correlations being thresholded to zero. |
signf |
A p x p matrix indicating for each partial correlation whether it is significantly different to zero. |
ci.lower |
A p x p matrix indicating the lower confidence interval for each partial correlation. |
ci.upper |
A p x p matrix indicating the upper confidence interval for each partial correlation. |
Jonas Haslbeck <[email protected]>; Lourens Waldorp <[email protected]>
Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. John Wiley & Sons, Inc..
Wasserman, L., & Roeder, K. (2009). High dimensional variable selection. Annals of statistics, 37(5A), 2178.
Meinshausen, N., Meier, L., & Bühlmann, P. (2009). P-values for high-dimensional regression. Journal of the American Statistical Association, 104(488), 1671-1681.
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso_ms(data = ptsd_data) ## End(Not run)
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso_ms(data = ptsd_data) ## End(Not run)
Estimate Gaussian Graphical Model with nodewise regression, selecting edges with standard hypothesis tests and the Bonferroni-Holm Correction.
OLS(data, pbar = TRUE, correction = TRUE, ci.level = 0.95, rulereg = "and")
OLS(data, pbar = TRUE, correction = TRUE, ci.level = 0.95, rulereg = "and")
data |
An n x p matrix containing the data, where n are cases and p are variables |
pbar |
If |
correction |
If |
ci.level |
Specifies the width of the confidence interval used for testing the null hypothesis that a parameter is different to zero. Defaults to |
rulereg |
Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to |
The function returns a list with the following entries:
est |
A p x p matrix with point estimates for all partial correlations |
est.signf |
A p x p matrix with point estimates for all partial correlations with non-significant partial correlations being thresholded to zero. |
signf |
A p x p matrix indicating for each partial correlation whether it is significantly different to zero. |
ci.lower |
A p x p matrix indicating the lower confidence interval for each partial correlation. |
ci.upper |
A p x p matrix indicating the upper confidence interval for each partial correlation. |
ints |
A p-vector of estimated intercepts. |
Jonas Haslbeck <[email protected]>
Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. John Wiley & Sons, Inc..
## Not run: # Fit GGM to PTSD data out <- OLS(data = ptsd_data) ## End(Not run)
## Not run: # Fit GGM to PTSD data out <- OLS(data = ptsd_data) ## End(Not run)
Plot point estimates and confidence intervals for models estimated with the lasso_ms
, lasso_dsp
, lasso_dsp_boot
and OLS
functions.
## S3 method for class 'inet' plot(x, labels = NULL, order = FALSE, subset = NULL, cex.labels = 0.80, cex.axis = 0.75, ...)
## S3 method for class 'inet' plot(x, labels = NULL, order = FALSE, subset = NULL, cex.labels = 0.80, cex.axis = 0.75, ...)
x |
The output object from either |
labels |
A p-vector of characters specifying the labels for variables. |
order |
If |
subset |
Allows to only display a subset of the edges. For example, if |
cex.labels |
The font size of the edge labels. |
cex.axis |
The font size of the axes. |
... |
Additional arguments. |
Jonas Haslbeck <[email protected]>
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso_dsp(data = ptsd_data) # Plot first 20 edges plot(out, labels = colnames(ptsd_data), order=TRUE, subset = 1:20) ## End(Not run)
## Not run: # Fit GGM to PTSD data set.seed(1) out <- lasso_dsp(data = ptsd_data) # Plot first 20 edges plot(out, labels = colnames(ptsd_data), order=TRUE, subset = 1:20) ## End(Not run)